Chapter 13 Study Questions

Mass percent

1. What is the mass percentage of KMnO_{4} in a solution containing 1.00 mole of KMnO_{4} and 158 g of water?
2. How many moles of KMnO_{4} are needed to prepare 335 g of a 22.0% solution?

Molarity

3. How many moles of NaCl are in 275 mL of 0.500 M NaCl ?
4. What mass of NaCl is needed to prepare $250 . \mathrm{mL}$ of a 2.00 M NaCl solution?
5. What volume of a 2.00 M NaCl solution is needed to make 125 mL of a 0.350 M NaCl solution?
6. What is the molarity of a solution made by dissolving 90.0 grams of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right.$; molar mass $=180 . \mathrm{g} / \mathrm{mole}$) in enough water to yield 200. mL of solution?
7. What mass of potassium chloride is needed to prepare $150 . \mathrm{mL}$ of a 0.300 M potassium chloride solution?
8. When 1.00 mol of potassium nitrate is mixed with 100 g of water at $40^{\circ} \mathrm{C}, 63 \mathrm{~g}$ potassium nitrate dissolves.
a) Is the solution saturated, unsaturated or supersaturated?
b) Calculate the mass percent of potassium nitrate in this solution.
9. What is the molarity of an HCl solution if 25.0 mL of a 6.00 M HCl solution are diluted to 1.50 liters?
10. How many grams of sodium hydroxide are in 250 . g of a 20.0% solution?

Summary of Chapter 13: Solutions
Definition of solutions
Like dissolves like (polarity)
Solubility
Electrolytes, nonelectrolyes
Strong and weak electrolytes
Unsaturated, saturated and supersaturated solutions
Mass percent
Molarity (M)
Dilution

Answers to Chapter 13 Study Questions

1. mass percent $=\frac{\text { mass } \mathrm{KMnO}_{4}}{\text { mass solution }} \times 100 \%$;
mass $\mathrm{KMnO}_{4}=1.00$ mole $=158 \mathrm{~g}$; mass solution $=158 \mathrm{~g} \mathrm{KMnO} 4+158 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=316 \mathrm{~g}$
mass percent $=\frac{158 \mathrm{~g} \mathrm{KMnO}}{4} 10.0 \%$
2. 335 g solution $x \frac{22.0 \mathrm{~g} \mathrm{KMnO}}{4} 100 \mathrm{~g} \mathrm{solution} ~\left(\frac{1 \mathrm{~mol} \mathrm{KMnO}_{4}}{158 \mathrm{~g} \mathrm{KMnO}}{ }_{4} \quad=0.466 \mathrm{moles}\right.$
3. 275 mL solution $\mathrm{x} \frac{0.500 \mathrm{~mol} \mathrm{NaCl}}{1000 \mathrm{~mL} \text { solution }}=0.138 \mathrm{moles}$
4. 250 mL solution $\mathrm{x} \frac{2.00 \mathrm{~mol} \mathrm{NaCl}}{1000 \mathrm{~mL} \text { solution }} \times \frac{58.5 \mathrm{~g} \mathrm{NaCl}}{1 \mathrm{~mol} \mathrm{NaCl}}=29.2 \mathrm{~g}$
5. $\mathrm{V}_{1} \times \mathrm{M}_{1}=\mathrm{V}_{2} \times \mathrm{M}_{2} ; \quad \mathrm{V}_{1} \times 2.00 \mathrm{M}=125 \mathrm{~mL} \times 0.350 \mathrm{M}$ $\mathrm{V}_{1}=125 \mathrm{~mL} \times 0.350 \mathrm{M} / 2.00 \mathrm{M}=21.9 \mathrm{~mL}$
6. molarity $=\frac{\text { moles solute }}{L \text { solution }} ; \frac{90.0 \mathrm{~g} \text { glu } \cos e}{200 m L \text { solution }} x \frac{1000 \mathrm{~mL}}{1 \text { liter }} x \frac{1 \text { mol glu } \operatorname{cose}}{180 g \text { glu } \operatorname{cose}}=2.50 \mathrm{M}$
7. (Molarity as a conversion factor)
$150 \mathrm{~mL} \times \frac{0.300 \mathrm{~mol} \mathrm{KCl}}{1000 \mathrm{~mL}} \times \frac{74.6 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{KCl}}=3.36 \mathrm{~g}$
8. (Solubility; Mass Percent)
a) Saturated. 1 mole $\mathrm{KNO}_{3}=101 \mathrm{~g}$; since $101 \mathrm{~g}>63 \mathrm{~g}$, only 63 g dissolve and the solution is saturated.
b) mass percent $=\underline{\text { mass solute }} \times 100 \%=\underline{63} \mathrm{~g} \mathrm{KNO}_{3} \times 100 \%=39 \%$ mass solution $\quad 163 \mathrm{~g}$ solution
9. (Molarity; Dilution) $\mathrm{V}_{1} \times \mathrm{M}_{1}=\mathrm{V}_{2} \times \mathrm{M}_{2} ; 1.50 \mathrm{~L}=1500 \mathrm{~mL}$

$$
25.0 \mathrm{~mL} \times 6.00 \mathrm{M}=1500 \mathrm{~mL} \times \mathrm{M}_{2} ; \mathrm{M}_{2}=\frac{25.0 \mathrm{~mL} \times 6.00 \mathrm{M}}{1500 \mathrm{~mL}}=0.100 \mathrm{M}
$$

10. (Mass percent as a conversion factor)
11. g solution $\times \underline{20.0 \mathrm{~g} \mathrm{NaOH}}=50.0 \mathrm{~g} \mathrm{NaOH}$ 100 g solution
