Chapter 13 Study Questions

Mass percent

- 1. What is the mass percentage of $KMnO_4$ in a solution containing 1.00 mole of $KMnO_4$ and 158 g of water?
- 2. How many moles of KMnO₄ are needed to prepare 335 g of a 22.0% solution?

Molarity

- 3. How many moles of NaCl are in 275 mL of 0.500 M NaCl?
- 4. What mass of NaCl is needed to prepare 250. mL of a 2.00 M NaCl solution?
- 5. What volume of a 2.00 M NaCl solution is needed to make 125 mL of a 0.350 M NaCl solution?
- 6. What is the molarity of a solution made by dissolving 90.0 grams of glucose ($C_6H_{12}O_6$; molar mass = 180. g/mole) in enough water to yield 200. mL of solution?
- 7. What mass of potassium chloride is needed to prepare 150. mL of a 0.300 M potassium chloride solution?
- 8. When 1.00 mol of potassium nitrate is mixed with 100. g of water at 40°C, 63 g potassium nitrate dissolves.
 - a) Is the solution saturated, unsaturated or supersaturated?
 - b) Calculate the mass percent of potassium nitrate in this solution.
- 9. What is the molarity of an HCl solution if 25.0 mL of a 6.00 M HCl solution are diluted to 1.50 liters?
- 10. How many grams of sodium hydroxide are in 250. g of a 20.0% solution?

Summary of Chapter 13: Solutions

Definition of solutions Like dissolves like (polarity) Solubility Electrolytes, nonelectrolyes Strong and weak electrolytes Unsaturated, saturated and supersaturated solutions Mass percent Molarity (M) Dilution Introductory Chemistry

Answers to Chapter 13 Study Questions

1. mass percent = $\frac{mass \ KMnO_4}{mass \ solution} x \ 100\%;$ mass KMnO₄ = 1.00 mole = 158 g; mass solution = 158 g KMnO₄ + 158 g H₂O = 316 g mass percent = $\frac{158 \ g \ KMnO_4}{316 \ g \ solution} = 50.0 \ \%$ 2. 335 g solution $x \frac{22.0 \ g \ KMnO_4}{100 \ g \ solution} x \frac{1 \ mol \ KMnO_4}{158 \ g \ KMnO_4} = 0.466 \ moles$ 3. 275 mL solution x $\frac{0.500 \text{ mol NaCl}}{1000 \text{ mL solution}} = 0.138 \text{ moles}$ 4. 250 mL solution x $\frac{2.00 \text{ mol NaCl}}{1000 \text{ mL solution}} \times \frac{58.5 \text{ g NaCl}}{1 \text{ mol NaCl}} = 29.2 \text{ g}$ 5. $V_1 \times M_1 = V_2 \times M_2$; $V_1 \times 2.00 \text{ M} = 125 \text{ mL} \times 0.350 \text{ M}$ $V_1 = 125 \text{ mL x } 0.350 \text{ M}/2.00 \text{ M} = 21.9 \text{ mL}$ 6. molarity = $\frac{moles \ solute}{L \ solution}$; $\frac{90.0 \ g \ glu \cos e}{200 \ mL \ solution} x \frac{1000 \ mL}{1 \ liter} x \frac{1 \ mol \ glu \cos e}{180 \ g \ glu \cos e} = 2.50 \ M$ 7. (Molarity as a conversion factor) $150 \text{ mL} \times \frac{0.300 \text{ mol KCl}}{1000 \text{ mL}} \times \frac{74.6 \text{ g}}{1 \text{ mol KCl}} = 3.36 \text{ g}$ 8. (Solubility: Mass Percent) a) Saturated. 1 mole KNO₃ = 101g; since 101 g > 63 g, only 63 g dissolve and the solution is saturated. b) mass percent = mass solute x 100% = 63 g KNO₃ \times 100% = 39% mass solution 163 g solution 9. (Molarity; Dilution) $V_1 \times M_1 = V_2 \times M_2$; 1.50 L = 1500 mL 25.0 mL × 6.00 M = 1500 m L × M₂; M₂ = $\frac{25.0 \text{ mL} \times 6.00 \text{ M}}{1500 \text{ mL}} = 0.100 \text{ M}$ 10. (Mass percent as a conversion factor)

250. g solution x 20.0 g NaOH = 50.0 g NaOH 100 g solution